A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder.

نویسندگان

  • Gary Hin-Fai Yam
  • Christian Zuber
  • Jürgen Roth
چکیده

Mutations in proteins that induce misfolding and proteasomal degradation are common causes of inherited diseases. Fabry disease is a lysosomal storage disorder caused by a deficiency of alpha-galactosidase A activity in lysosomes resulting in an accumulation of glycosphingolipid globotriosylceramide (Gb3). Some classical Fabry hemizygotes and all cardiac variants have residual alpha-galactosidase A activity, but the mutant enzymes are unstable. Such mutant enzymes appear to be misfolded, recognized by the ER protein quality control, and degraded before sorting into lysosomes. Hence, correction of the trafficking defect of mutant but catalytically active enzyme into lysosomes would be beneficial for treatment of the disease. Here we show that a nontoxic competitive inhibitor (1-deoxygalactonojirimycin) of alpha-galactosidase A functions as a chemical chaperone by releasing ER-retained mutant enzyme from BiP. The treatment with subinhibitory doses resulted in efficient, long-term lysosomal trafficking of the ER-retained mutant alpha-galactosidase A. Successful clearance of lysosomal Gb3 storage and a near-normal lysosomal phenotype was achieved in human Fabry fibroblasts harboring different types of mutations. Small molecule chemical chaperones will be therapeutically useful for various lysosomal storage disorders as well as for other genetic metabolic disorders caused by mutant but nonetheless catalytically active enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels

Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrat...

متن کامل

Inducible HSP70 Is Critical in Preventing the Aggregation and Enhancing the Processing of PMP22

Chaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cy...

متن کامل

Modulation of Heat Shock Transcription Factor 1 as a Therapeutic Target for Small Molecule Intervention in Neurodegenerative Disease

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attrac...

متن کامل

Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo.

The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2005